Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles

ADRIEN C. FINZI1, ROSE Z. ABRAMOFF1, KIMBERLY S. SPILLER1, EDWARD R. BRZOSTEK2,3, BRIDGET A. DARBY1,4, MARK A. KRAMER5 and RICHARD P. PHILLIPS3

1Department of Biology and PhD Program in Biogeoscience, Boston University, Boston MA 02215, USA, 2Department of Geography, Indiana University, Bloomington IN 47405, USA, 3Department of Biology, Indiana University, Bloomington IN 47405, USA, 4Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA, 5Department of Mathematics & Statistics, Boston University, Boston, MA 02215, USA

Abstract

While there is an emerging view that roots and their associated microbes actively alter resource availability and soil organic matter (SOM) decomposition, the ecosystem consequences of such rhizosphere effects have rarely been quantified. Using a meta-analysis, we show that multiple indices of microbially mediated C and nitrogen (N) cycling, including SOM decomposition, are significantly enhanced in the rhizospheres of diverse vegetation types. Then, using a numerical model that combines rhizosphere effect sizes with fine root morphology and depth distributions, we show that root-accelerated mineralization and priming can account for up to one-third of the total C and N mineralized in temperate forest soils. Finally, using a stoichiometrically constrained microbial decomposition model, we show that these effects can be induced by relatively modest fluxes of root-derived C, on the order of 4% and 6% of gross and net primary production, respectively. Collectively, our results indicate that rhizosphere processes are a widespread, quantitatively important driver of SOM decomposition and nutrient release at the ecosystem scale, with potential consequences for global C stocks and vegetation feedbacks to climate.

Keywords: carbon cycle, global change, nitrogen cycle, priming effects, soil organic matter

Received 10 September 2014; revised version received 28 October 2014 and accepted 31 October 2014

Introduction

More carbon (C) is stored in soil organic matter (SOM) than that found in plant biomass and as CO₂ in the Earth’s atmosphere combined (Schimel, 1995). As a major reservoir of C and the primary source of nutrients that fuel primary production (Cleveland et al., 2013), it is essential to understand the factors regulating SOM turnover to predict terrestrial feedbacks to future climate change. Historically, soil temperature and moisture have been viewed as the primary drivers of SOM decomposition. However, an emerging but largely untested view argues that plant C allocation to roots and rhizosphere microbes is a major driver of the decomposition process and that it is quantitatively important at ecosystem scales (Fontaine et al., 2007; Bardgett et al., 2008; Schmidt et al., 2011). Plants rapidly transfer photosynthate into the soil around roots (i.e., the rhizosphere, Hogberg et al., 2001; De Deyn et al., 2011), which stimulates microbial activity and microbial demand for nutrients (Ekblad & Nordgren, 2002). This, in turn, stimulates microbial production of exoenzymes that decompose SOM and release nutrients (Schimel & Weintraub, 2003) through priming effects (Bengtson et al., 2012). While components of this general principle have long been recognized (Bingeman et al., 1953; Cheng et al., 2003; Hinsinger et al., 2009; Iversen, 2010; Jenkinson et al., 1985; Jones et al., 2004; Kuzyakov et al., 2000; Löhnis, 1926), remarkably few studies have examined the magnitude of root-induced changes in nutrient cycling and decomposition across vegetation types or quantified the ecosystem-scale consequences of such rhizosphere effects.

Given that global change alters the flux of C belowground (Uselmann et al., 2000; Johansson et al., 2009; Drake et al., 2011; Phillips et al., 2011; Yin et al., 2013), it is essential to develop scaling techniques for empirical measurements of rhizosphere processes. One such approach is to estimate the percentage of soil that is in a ‘rhizosphere’ state as a function of the distribution and architecture of fine root systems and model the contribution of rhizosphere C and nutrient fluxes to total fluxes in the entire soil volume. By mapping rhizosphere volume to the distribution of fine roots, a parameter that is now being included in many land surface models (Iversen, 2010), it may ultimately be possible to study rhizosphere processes at the spatial scales relevant to climate change research. For the purposes of

Correspondence: Adrien C. Finzi, Department of Biology Boston University 5 Cummington Mall Boston MA 02215, USA, tel. +617 353 2453, fax +617 353 6340, e-mail: afinzi@bu.edu
this study, we use the term ‘exudation’ to encompass rhizosphere C inputs to the soil derived from rhizodeposits (e.g., root cap sloughing) and exudation of soluble C- and N-containing compounds from the root surface.

While previous studies have estimated exudation rates (Smith, 1976; Phillips et al., 2011; Brzostek et al., 2013) and rhizosphere effects (Phillips & Fahey, 2006) in forests, few studies have linked these processes at the ecosystem scale or provided a framework for incorporating these dynamics into large-scale models. To the extent they have been incorporated into models (e.g., Wutzler & Reichstein, 2013; Cheng et al., 2014; Foereid et al., 2014; Perveen et al., 2014), their representation is relatively crude and lacks representation of the actual processes taking place. For example, while the spatial extent of the rhizosphere is largely a function of a root system’s depth distribution, architecture and exudation rate, these components are absent from the current generation of ecosystem and land surface models. Further, root and microbial processes are rarely coupled in most large-scale models. As such, microbial responses to localized and transient root-derived inputs of DOC and DON, and their role in promoting feedbacks to plant productivity under changing environmental conditions, cannot be predicted.

This study provides a novel, quantitative framework for investigating how changes in root and microbial processes (e.g., such as those triggered by rising atmospheric CO2, N deposition, warming, etc.) may influence ecosystem C and N cycling and ultimately feedbacks to climate. Here, we use a meta-analytical approach to quantify rhizosphere effects – defined as the enhancement of a rhizosphere pool or process rate relative to that in the bulk soil – on microbial biomass and activity in soils from agricultural, herbaceous and woody growth forms. We then use the results of the meta-analysis in conjunction with published data on the distribution of root biomass and root architecture to model the contribution of the rhizosphere to total soil C and N mineralization to a depth of 1 m in temperate forest soil. Finally, we use a stoichiometrically constrained microbial decomposition model to estimate the quantity of exuded C that is required to achieve the modeled rhizosphere contributions. Our results show that (i) the magnitude and direction of rhizosphere processes are similar among plant growth forms, (ii) root-induced changes in SOM decomposition and nutrient flux can account for up to one-third of the total C and N mineralized in temperate forest soils, and (iii) the magnitude of such rhizosphere effects in forests can be induced by relatively small inputs of root-derived C.

Materials and methods

Meta-analysis

We used a number of search strings in Thompson ISI® Web of Science and Google Scholar to identify rhizosphere data in the literature for the meta-analysis. For each study, we tabulated information on mean microbial activity, its standard deviation and the sample size (see Tables S1–S6). When necessary, we used DataThief III to obtain mean and standard deviation (or standard error) estimates from plotted data. We also collected information about each experiment, including ecosystem and vegetation type (i.e., woody, nonwoody, agricultural), growing environment (e.g., greenhouse, field, elevated CO2, N fertilization) and the location of the study.

The data used for microbial activity was limited to studies using a manual separation of bulk from rhizosphere soil. The most common is the gentle shaking of the roots collected from soil cores, with the soil adhering after shaking considered the rhizosphere. For analysis of rhizosphere effects on microbial biomass and respiration, extracellular enzyme activity and N mineralization (gross and net), we tabulated data from studies using this definition of rhizosphere soil (Table S1). To this data set, we added four additional studies. One study used a 2-mm distance from the root as the cutoff between rhizosphere (<2 mm) and bulk soil (>2 mm). The remaining three studies employed a bag-separation method, where plants were grown in a nylon bag with a small volume of soil that allows the movement of water and nutrients to the root system. A large number of studies measured ‘rhizosphere respiration’ in the field (e.g., trenching experiments, 13C and 14C labeling), but these analyses confound the contributions of roots and microbes, particularly for CO2 production, and were therefore excluded. The method used to generate rhizosphere and bulk soil in each study is listed in Table S1.

This study also collected information on the rate of SOM decomposition in the rhizosphere compared to bulk soil, using information from planted and unplanted mesocosms. Only studies using isotopes were considered in this analysis. The mesocosms were established such that CO2 produced from the metabolism of labeled photosynthetic had an isotopic composition unique from that of SOM. In these studies, the flux and isotopic composition of the respired CO2 was collected over a period of weeks to months. A two-end member-mixing model was then used to calculate the fraction of total microbial respiration derived from SOM in the planted mesocosms. Multiplying this fraction by total CO2 efflux provided a quantitative estimate of SOM decomposition due to the presence of a rhizosphere. When compared to the rate of CO2 efflux in the unplanted controls, these studies estimate the combined effects of root activity (e.g., soil structure and moisture) and root-derived organic matter (e.g., exudates, mycorrhizal activity) on SOM loss.

Despite the variety of experimental designs and sampling schemes, most of the data on microbial biomass and activity were measured on a mass-specific basis (e.g., mg CO2 g−1 h−1). Data presented on a per unit area or pot basis were converted to a mass-specific basis prior to statistical analysis, using information on soil bulk density and sampling depth.
provided in the paper. The data were then scaled to consistent units of mass (i.e., CO₂-C) and time (hour). The methods and assumptions required to scale the data are found in the Supplementary Information (Tables S2-S6). This approach enabled us to plot rhizosphere microbial activity as a function of bulk-soil microbial activity and also to calculate the stimulation of microbial activity in rhizosphere compared to bulk soil at the median bulk-soil value for each microbial process studied (c.f., Norby et al., 2005).

We used meta-analysis to assess differences in microbial activity between rhizosphere and bulk soil (Meta-Win V2.0, Rosenberg et al., 1999). Meta-analysis provides a quantitative statistical approach for synthesizing the results of multiple independent experiments. We calculated a single response ratio (RR), defined here as the mean of the process of interest in the rhizosphere sample divided by its corresponding mean in the bulk-soil sample, for experiments with repeated measurements of the same sample over time (i.e., the average across all time points). Data were also averaged when a particular study categorized data according to criteria that were not relevant to our study [e.g., different depths of soil, different watering treatments, or similar enzyme types (e.g., acid and alkaline phosphatase)]. If a study had samples from different plant species and different years or used different methods of analysis (e.g., substrate-induced respiration and chloroform fumigation extraction), these were considered independent observations and were not averaged.

For each pair of observations (rhizosphere, bulk soil), Meta-Win calculates the effect size of a given treatment by calculating the natural log of the response ratio [i.e., ln(RR)]. Each response ratio is weighted in the overall analysis of variance based on the sample size and standard deviation around each mean, which when necessary, we calculated from standard errors and sample size. Values of ln(RR) >0 indicate stimulatory effects and values <0, inhibitory effects. For each data set, average ln(RR) ± 95% confidence intervals not overlapping zero indicated a significant treatment response. Given the assumption of log-normal distribution in meta-analysis, in-text references to percent rhizosphere stimulation are presented at the original scale using the transformation mean [ln (RR)] = e^[ln(D)/C0], the mean of the log-normal distribution (Clark, 2007).

Of the >1000 papers we reviewed, 52 were suitable for meta-analysis of microbial and exoenzyme activity and nine for SOM decomposition. The data for microbial and exoenzyme activity were analyzed by experimental setting (field vs. greenhouse) and vegetation type (woody vs. herbaceous vs. agricultural species). Similarly, given the abundance of enzyme data, it was possible to estimate an effect size for different enzyme functional groups. The five functional groups were as follows: labile-C-degrading enzymes (glucosidase, galactosidase, endocellulase, saccharase), recalcitrant-C-degrading enzymes (phenol oxidase, peroxidase), enzymes involved in the depolymerization and mineralization of N (N-acetylglucosaminidase, peptidase, protease, urease, asparaginase), P (acid & alkaline phosphatase, phosphodiesterase) and S (sulfatase, Table S4). The data on N mineralization were separated according to whether the observation was a gross or net flux (Table S5). Finally, due to relatively small sample size (nine studies and 30 observations), it was only possible to test for differences in SOM decomposition between planted and unplanted controls.

Scaling rhizosphere processes

Estimates of root length, depth distribution and architecture were used to upscale meta-analysis results to the ecosystem scale. We focused the upscaling on temperate forests because this ecosystem type had the most data available. Together, published data in Gale & Grigal (1987) and Jackson et al. (1997) were used to estimate the cumulative distribution of fine root length (FRL, km m⁻²) to 1 m depth in temperate forest soils. This distribution was asymptotically nonlinear (Jackson et al., 1997):

\[r(d) = 1 - \beta d \]

where \(r(d) \) is the cumulative fraction of roots above profile depth, \(d \) (in cm, including the organic horizon), and \(\beta \) is an estimated shape parameter equivalent to 0.95 in this study (Gale & Grigal, 1987). From the cumulative distribution, we calculated the proportion of FRL in 1 cm depth increments in the soil (Fig. S1a). This proportion multiplied by total FRL (km m⁻²) distributed FRL in 1 cm depth increments to 1 m depth.

Previous research on fine root architecture in nine North American tree species found that the majority of FRL is found in the finest roots (Pregitzer et al., 2002). There is large variability among these tree species, so for this study, we conservatively assumed that 75% of total FRL is found in roots ≤0.5 mm. To estimate the proportion of roots in different diameter classes, we used a logistic (sigmoid) function. With an asymptote of 1 (i.e., all roots have a diameter ≤2 mm), the cumulative root diameter function was estimated as:

\[CRL = \frac{1}{1 + e^{-\gamma d}} \]

where CRL = cumulative root length and rootD is root diameter in mm (Fig. S1b). The values of \(\alpha \) (=75, intercept) and \(\gamma \) (=11, exponential decay coefficient) fit the CRL distribution to the requirement that 75% of roots are ≤0.5 mm diameter. From the cumulative root-length distribution, we calculated the proportion of FRL in 0.02-mm-diameter increments for each cm of soil to 1 m depth.

The volume of rhizosphere soil was estimated from the distribution and architecture of the roots. Exudation rates and sloughing of necromass associated with root growth are thought to vary as a function of root diameter with fine, actively growing first- and second-order roots exuding more than wider diameter, third-order and above roots (Rovira, 1969). We therefore modeled the distance exudates travel from the root surface using a first-order, exponential decay model as a function of root diameter. This approach merges the idea that finer roots are likely to exude more than coarser roots and that a larger pulse of exudates is likely to travel further from the root surface than a small pulse of exudates.
The distance exudates travel from the root surface was limited to 2 mm. This assumption is conservative relative to that reported in the literature (Table 1) where the median, mean and upper bound on exudate distance from the root surface are 2.3, 3.4 and 12 mm, respectively. Exudate diffusion distance from the root surface was modeled as a negative exponential function of root diameter viz.:

\[
\text{exudate diffusion distance (mm)} = 2 \times \exp(-k \cdot \text{rootD})
\]

(3)

where \(k \) describes the rate at which exudate distance declines as a function of rootD (mm) and 2 is the y-intercept (i.e., maximum exudate diffusion distance). We conservatively assumed that an exudate produced by a 1-mm-diameter root extended no farther than 0.5 mm from the root surface (\(k = -1.5 \)).

Mass-specific rates of rhizosphere processes reported in the meta-analysis were extrapolated to the ecosystem scale (i.e., g m\(^{-2}\) time\(^{-1}\)) in a two-step process: (i) estimating the volume of fine roots, rhizosphere and bulk soil and (ii) accounting for the decline in the quantity of SOM with depth. The volume of soil occupied by roots was based on the modeled FRL and diameter distribution to 1 m depth, assuming the roots were cylindrical. We similarly estimated root plus rhizosphere volume, from which we calculated rhizosphere volume by difference (Fig. S1c). All calculations accounting for the decline in the quantity of SOM with increasing depth as reported in Jobbagy & Jackson (2000). Hence, rates of microbial respiration and net N mineralization in bulk and rhizosphere soil were greatest at the soil surface and declined exponentially with depth viz.:

\[
\text{SOM multiplier [dimensionless]} = 1 \times e^{-0.55 \times \text{soil depth}}
\]

(4)

There is substantial uncertainty associated with the distance exudates travel from the root surface and large variations in root architecture and depth distribution among species and ecosystems. To assay the sensitivity of the model to these uncertainties and variations, we doubled and halved the coefficients relative to our initial model parameters (Table 2). An annotated version of the scaling model code and empirical data on root distributions can be found in Appendices S1 and S2.

Modeling exudation flux

To estimate the rhizosphere C flux, we coupled the microbial decomposition model [MCNiP, Drake et al., 2013a,b; Cheng et al., 2014] with the depth, length and architecture of roots estimated for temperate forests (Fig. S2). In brief, MCNiP adds an N cycling subroutine to the C-only microbial physiology model of Allison et al. (2010), using stoichiometric principles of Schimel & Weintraub (2003). In the model, litter inputs (leaf, root) are partitioned to SOC and DOC pools at each time step (h\(^{-1}\)). Root exudates are, however, input only into the DOC pool. Microbes take up DOC and DON according to Michaelis–Menten kinetics. The rates of C and N mineralization are dependent on system stoichiometry and temperature via Arrhenius kinetics (Davidson et al., 2012).

Depth-dependent variation in microbial processes was added to MCNiP by creating 100 soil layers, each 1 cm deep (i.e., to a depth of 1 m). Mirroring the change in SOM content, inputs to SOC and DOC pools declined exponentially with depth (Jobbagy & Jackson, 2000). Within each soil layer, the soil volume was separated into bulk and rhizosphere soil based on the output generated by Eqs (1)-(3). The exudation rate into the rhizosphere soil volume was increased from a starting point of 10\(^{-4}\) mg C cm\(^{-3}\) root until the model reproduced the microbial respiration effect size for woody plants in the meta-analysis to a depth of 15 cm (lnRR = 0.4077). For the purpose of model calibration, temperature was held constant at 20 °C, the same temperature at which the majority of the meta-analysis studies were conducted.

Once parameterized (Table S7, see Appendix S1 for spin up parameters), the model was used to predict annual root exudation flux (g C m\(^{-2}\) yr\(^{-1}\)) for a hypothetical temperate forest ecosystem, assuming roots exude C 24 h d\(^{-1}\) during a 200-day growing season – an average growing season length for temperate forests (Churkina et al., 2005; Wu et al., 2014).

Table 1 Published estimates of the distance plant root exudates were found from the surface of roots

<table>
<thead>
<tr>
<th>Reference</th>
<th>Exudate diffusion distance from the root surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dessureault-Rompre et al. (2007)</td>
<td>>5 mm</td>
</tr>
<tr>
<td>Jones (1998)</td>
<td>0.2–1 mm</td>
</tr>
<tr>
<td>zu Schweinsberg-Mickan et al. (2010)</td>
<td>2.6 mm</td>
</tr>
<tr>
<td>Sauer et al. (2006)</td>
<td>2–12 mm</td>
</tr>
<tr>
<td>De Neergaard and Magid (2001)</td>
<td>1–3 mm</td>
</tr>
<tr>
<td>Toussaint et al. (1995)</td>
<td>5–10 mm</td>
</tr>
<tr>
<td>Darrah (1991)</td>
<td>2 mm</td>
</tr>
<tr>
<td>Jones et al. (1996)</td>
<td>5 mm</td>
</tr>
<tr>
<td>Nuruzzaman et al. (2006)</td>
<td>3–4 mm</td>
</tr>
<tr>
<td>Dick and Kandeler (2005)</td>
<td>0–13 mm</td>
</tr>
<tr>
<td>Herman et al. (2006)</td>
<td>2 mm</td>
</tr>
<tr>
<td>Landi et al. (2006)</td>
<td>2 mm</td>
</tr>
<tr>
<td>Cheng (2009)</td>
<td>5 mm</td>
</tr>
<tr>
<td>Falchini et al. (2003)</td>
<td>2 mm</td>
</tr>
</tbody>
</table>

Table 2 Parameter values for sensitivity analysis of fine root length (FRL), cumulative root length (CRL) and exudate diffusion distance (EDD)

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Int.</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRL (km m(^{-2}))</td>
<td>3.6</td>
<td>7.2</td>
<td>10.8</td>
</tr>
<tr>
<td>CRL ((\mu)g, unitless)</td>
<td>7.14</td>
<td>11</td>
<td>21.5</td>
</tr>
<tr>
<td>EDD ((k), unitless)</td>
<td>2.9</td>
<td>1.45</td>
<td>0.73</td>
</tr>
</tbody>
</table>
We assumed that root exudation rates decrease with depth in the soil. The model was then used to explore temporal variations in the magnitude of rhizosphere effects on microbial activity as predicted by MCNiP. To add seasonality to the simulation, we scaled the calibrated model output by assuming a Q10 of 2 for microbial respiration and a Gaussian distribution for soil temperature that has a minimum of 0 °C on growing season days 1 and 200, and a maximum of 20 °C on day 100. Once again, we evaluated the sensitivity of the MCNiP model estimates of root C exudation and rhizosphere microbial activity to exudate diffusion distance, root architecture and fine root length.

Results

Meta-analysis

Microbial biomass was significantly greater in rhizosphere than bulk soil (Fig. 1a). This stimulation was significantly higher in herbaceous and agricultural compared to woody-dominated ecosystems (Fig. 1b). There were sufficient data to test for differences between chloroform fumigation extraction (CFE) and substrate-induced respiration (SIR). SIR estimates of biomass ($\ln(\text{RR}) = 0.54; \text{CI} = 0.52–0.56$) were significantly higher than those of CFE ($\ln(\text{RR}) = 0.43; \text{CI} = 0.41–0.44$). Across all studies, microbial biomass was 62% higher in rhizosphere compared to bulk soil (Fig. 2a).

Microbial respiration rates were significantly enhanced in rhizosphere compared to bulk soil (Fig. 1a), and this effect was far larger in agricultural species compared to woody plants (Fig. 1b). There were insufficient data to test for nonwoody species effects on rhizosphere respiration. Across all studies, respiration in rhizosphere soil was 80% higher than bulk soil (Fig. 2b).

Exoenzyme activity was significantly higher in rhizosphere compared to bulk soil (Fig. 1a). Exoenzyme activity in the rhizosphere of woody and nonwoody plants was significantly higher than that in agricultural plants (Fig. 1b). The activity of labile-C-degrading enzymes in the rhizosphere was 55% greater than the bulk soil (Fig. 1c). The activity of N-degrading enzymes increased 35% in rhizosphere relative to bulk soil. This stimulation excludes the activity of urease reported by Zhang et al. (2012). Their data, plotted in gray, report a significant repression of urease activity in excess of any other study of exoenzyme or microbial activity. The activity of P- and recalcitrant-C-degrading enzymes was 45% and 44% greater in rhizosphere compared to bulk soil, respectively. Across all studies and enzyme classes, exoenzyme activity was 28% greater in rhizosphere compared to bulk soil (Fig. 2c).

The rate of inorganic N production was significantly greater in rhizosphere than bulk soil, and this effect held whether production was measured as net mineralization, gross NH₄ mineralization or net nitrification (Fig. 1a). The stimulation of N production in the

![Fig. 1](source)
rhizosphere was highest in nonwoody plants, lower in agricultural plants and lowest in woody plants (Fig. 1b). Across all studies, the net rate of inorganic N production in the rhizosphere was 69% greater than in the bulk soil (Fig. 2d).

The rate of SOM decomposition was significantly stimulated in rhizosphere compared to bulk soil (Fig. 1a). The stimulation was largest in woody and agricultural ecosystems and smallest in herbaceous ecosystems (Fig. 1b). Across studies, SOM decomposition in the rhizosphere was 82% greater than the bulk soil though the coefficient of determination for this relationship was substantially lower than that of the other microbial processes analyzed (Fig. 2e).
Scaling rhizosphere processes

As parameterized, the distance exudates travel from the root surface declined exponentially with root diameter (Fig. 3a). Coupled with the decline in fine root length, there was a steep decline in rhizosphere soil volume with depth (Fig. 3b). Integrating to 10 cm depth, rhizosphere volume and soil mass comprise 8–26% of the total soil volume (Table 3). Integrating to 30 cm and 100 cm depths, these percentages decline to 5–17% and 2–6%, respectively. Although heterotrophic respiration and N mineralization rates in the bulk soil exceed rhizosphere respiration rates at all depths, rhizosphere microbial activity contributed significantly to respiration and N mineralization in surface soil (Fig. 3e,f). Integrating data to 10 cm depth, rhizosphere respiration and N mineralization accounted for 10–33% of total fluxes, with higher percentages at the very surface (Table 3).

Modeling exudation flux

The MCNiP model estimated that 0.47 \(\mu \text{g C cm}^{-3} \) of rhizosphere soil is necessary to simulate the stimulation of microbial respiration in the rhizosphere of temperate forest soils observed in the empirical data. The majority of exudation occurs in the upper 30 cm of the soil (Fig. 4a). When scaled to the ecosystem level at median parameterizations for diffusion distance, CRL and root length, 45 \(\text{g C m}^{-2} \text{ yr}^{-1} \) are exuded from roots (Table 3). Microbial respiration in MCNiP was most sensitive to variations in rhizosphere diffusion distance and fine root length. It was least sensitive to variations in root architecture. At median parameterizations, MCNiP predicts total heterotrophic respiration rates of 365, 707 and 892 \(\text{g C m}^{-2} \text{ yr}^{-1} \) at soil depths of 10, 30 and 100 cm, respectively (Table 3).

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Median all parameters</th>
<th>Low EDD</th>
<th>Intermediate EDD</th>
<th>High EDD</th>
<th>Low CRL</th>
<th>High CRL</th>
<th>Low FRL</th>
<th>High FRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil mass</td>
<td>30</td>
<td>–</td>
<td>5%</td>
<td>11%</td>
<td>17%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>–</td>
<td>2%</td>
<td>4%</td>
<td>6%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Microbial</td>
<td>30</td>
<td>–</td>
<td>8%</td>
<td>17%</td>
<td>26%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Respiration</td>
<td>100</td>
<td>–</td>
<td>6%</td>
<td>14%</td>
<td>21%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>–</td>
<td>7%</td>
<td>16%</td>
<td>25%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mineralization</td>
<td>100</td>
<td>–</td>
<td>6%</td>
<td>13%</td>
<td>21%</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>MCNiP simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exudation</td>
<td>10</td>
<td>29</td>
<td>13</td>
<td>–</td>
<td>45</td>
<td>21</td>
<td>41</td>
<td>14</td>
</tr>
<tr>
<td>Rate</td>
<td>30</td>
<td>43</td>
<td>20</td>
<td>–</td>
<td>68</td>
<td>31</td>
<td>61</td>
<td>22</td>
</tr>
<tr>
<td>(gC m(^{-2}) yr(^{-1}))</td>
<td>100</td>
<td>45</td>
<td>21</td>
<td>–</td>
<td>71</td>
<td>33</td>
<td>64</td>
<td>23</td>
</tr>
<tr>
<td>Microbial</td>
<td>10</td>
<td>23%</td>
<td>11%</td>
<td>–</td>
<td>35%</td>
<td>17%</td>
<td>32%</td>
<td>12%</td>
</tr>
<tr>
<td>Respiration</td>
<td>30</td>
<td>18%</td>
<td>8%</td>
<td>–</td>
<td>27%</td>
<td>13%</td>
<td>25%</td>
<td>9%</td>
</tr>
<tr>
<td>(% total)</td>
<td>100</td>
<td>15%</td>
<td>7%</td>
<td>–</td>
<td>23%</td>
<td>11%</td>
<td>21%</td>
<td>8%</td>
</tr>
</tbody>
</table>

inputs of root-derived C induce disproportionately large effects on soil biogeochemistry.

In addition to accelerated soil-C turnover, priming is likely responsible for the observed enhancement of rhizosphere N mineralization (Figs 1 and 2). Nitrogen in SOM must be depolymerized from larger molecules and in many instances mineralized before it can become available to plants (Nasholm et al., 1998; Schimel & Bennett, 2004; Finzi & Berthrong, 2005; Gallet-Budynek et al., 2009). While the absence of a tracer (e.g., \(^{15}\)N) prevents us from drawing a definitive conclusion regarding the source of N, the majority of soil N is bound to C and thus, it is nearly certain that the stimulation of N fluxes in the rhizosphere is driven in large part by the decomposition of SOM and not simply the recycling of N contained within the root exudates (Grayston et al., 1997). Moreover, numerous other studies have reported positive correlations between gross N mineralization and SOM decomposition (Dijkstra & Cheng, 2007; Bengtson et al., 2012; Zhu et al., 2014), providing strong evidence that both microbial demand for N and exudate-induced shifts in microbial communities accelerate nutrient release from SOM (Chen et al., 2014). We cannot, however, exclude the possibility of some N derived from enhanced rhizosphere N\(_2\) fixation, a process favored under C-rich, anaerobic

Fig. 3 Model results for rhizosphere processes. (a) Exudate diffusion distance as a function of root diameter. (b) Rhizosphere soil mass as a percentage of total soil mass. (c) Rhizosphere and (d) bulk-soil heterotrophic respiration rate as a function of soil depth to 1 m. Percentage of (e) total respiration and (f) net N mineralization in the rhizosphere as a function of soil depth. The three lines in each plot propagate the effect of different rhizosphere diffusion distances from the root surface. The inset tables in (b), (e) and (f) are integrated estimates of total rhizosphere soil mass, respiration and N mineralization to 30-cm and 100-cm depth, respectively.
conditions that are presumably transiently present following exudation.

Rhizosphere scaling

The importance of scaling rhizosphere research is underscored by recent empirical and modeling studies showing their importance to the coupled cycles of soil C and N (Cheng, 2009; Bengtson et al., 2012; Zhu et al., 2014) and that the depolymerization of nutrients from SOM is essential to supporting long-term plant productivity in response to rising atmospheric CO₂ (Drake et al., 2011; Zak et al., 2011; Cheng et al., 2012, 2014) and climate warming (Zhu & Cheng, 2011; Hartley et al., 2012). To address the issue of rhizosphere scaling and develop a quantitative framework suitable for incorporation into the soil biogeochemistry components of models, we collected published information on fine root length (<2 mm), depth distribution, architecture and exudation. We coupled this information with the results of the meta-analysis and simple assumptions regarding soil properties with depth to generate a first-pass quantitative estimate of the ecosystem-scale consequences of rhizosphere microbial activity. The modeled estimate of rhizosphere soil volume (5-25% of the total soil volume) falls within the range of values reported in the literature (Fig. 5). Our model was not, however, calibrated or influenced by these data. Similarly, our estimate of exudate diffusion distance from the root is conservative relative to published estimates where exudate recovery distance frequently exceeds 2 mm from the root surface (Table 1).

At all depths, the rhizosphere contribution to C and N cycling exceeded its contribution to soil volume, and although bulk-soil microbial respiration and N mineralization rates exceed rhizosphere respiration rates at all depths in the soil, rhizosphere microbial activity made large contributions to C and N cycling in surface soil (Fig. 3cd). This is important because most of the microbial-respired CO₂ evading from the soil surface is generated near the surface rather than at depth where CO₂ readily accumulates at high concentrations (Gaudinski et al., 2000). Thus, while the percentage contribution of the rhizosphere to total fluxes declined substantially with increasing depth in the soil (Fig. 3), this decline does not obviate the conclusion that rhizosphere processes are potentially a quantitatively important component of the heterotrophic C flux from soils.

Modeling exudation flux

Using the distribution of rhizosphere volume from the scaling exercise, MCNiP was used to estimate the mass-specific rates of root exudation needed to recreate the effect size for rhizosphere respiration in the meta-analysis (Table 3). Total exudation flux was 45 gC m⁻² yr⁻¹ at median parameter values. Given estimates of gross primary production (GPP) for temperate forests of ~1300 gC m⁻² yr⁻¹ (Turner et al., 2003; Xiao et al., 2004) and net primary production (NPP) of ~780 g C m⁻² yr⁻¹ (Huston & Wolverton, 2009), median estimates of exudation rate are ~4% and ~6% of GPP and NPP, respectively.

In addition to the estimate of C exudation, MCNiP simulations offer additional insights into the priming effect and the coupled cycles of C and N. In particular, there is clear evidence for priming induced losses of SOC (Fig. 6a) that are consistent with studies of elevated CO₂ where higher primary production results in greater C inputs to the soil but often no change or a decline in the quantity of SOC (Hungate et al., 1997; Carney et al., 2007; Lichter et al., 2008; Talhelm et al., 2009; Cheng et al., 2012; Van Groenigen et al., 2014).
Beyond this qualitative agreement the model uncertainty in the exudation flux is associated with wide variation in the loss of SOC (Fig. 6a) that is related to the efficiency of SOM decomposition (Fig. 6b). The largest losses of SOC occur when the C:N ratio of exudates is <7 because of an increase in the efficiency of SOM decomposition, whereas SOC losses are dampened when exudate fluxes have C:N > 7 (Fig. 6a,b). Variation in the efficiency of SOM decomposition reflects the N constraint on exoenzyme synthesis in MCNiP. When exudates contain N, the N constraint on exoenzyme synthesis is alleviated, allowing for a large priming effect including an increase in the depolymerization of N from soil organic matter (Drake et al., 2013b). The additional N is then taken up and allocated to growth and additional exoenzyme synthesis (Drake et al., 2013a). When relatively little N is added in exudates, the priming effect still occurs but at lower levels and as a result of a larger microbial biomass rather than greater rates of SOM decomposition per unit microbial biomass.

Areas for future research

This study employed a three-pronged approach to quantify rhizosphere processes at the ecosystem scale (i.e., meta-analysis, rhizosphere scaling, simulation modeling). Collectively, these studies suggest that a relatively small proportion of C fixed is allocated to root exudation but that this flux has the potential for disproportionately large biogeochemical consequences. Admittedly, the magnitude of the effects reported here...
are uncertain while the results reported here may be viewed with skepticism, it is precisely this skepticism that we hope will encourage new studies and model refinements by other investigators.

There are several areas where future research would greatly aid model development:

1. The meta-analysis results clearly indicate the rhizosphere is a biogeochemical hotspot. The data do not, however, provide any insight into the distribution of hot moments in the rhizosphere. How does microbial activity vary as a function of the quantity and timing of root inputs (c.f., Herman et al., 2006)?

2. How far do root exudates travel from the root surface and what determines this distance? The large range of values reported in the literature suggests that exudation diffusion distances are highly variable presumably owing to root and soil factors or the types of compounds that are exuded. The use of model systems and analysis tools (e.g., 13C or 15C labeling) could greatly aid in this respect.

3. What is the relationship between root order and exudation? Defining roots by size is convenient, but it does not always relate to function because species vary widely in their architecture, suberation and maturation (c.f., Guo et al., 2008; Valenzuela-Estrada et al., 2008).

4. How does the timing of root production and turnover influence rhizosphere processes? Does exudation at particular times of the year result in greater effects on SOM decomposition and N mineralization? Models such as RADIX provide a framework for modeling root turnover (Gaudinski et al., 2010), a recent analysis of root phenology can help understand the timing of root growth (Abramoff & Finzi, 2014), and simulation models where exudates are added in a temperature-dependent context (e.g., seasonal time scale) may begin providing insight (Davidson et al., 2014). But, there is still a need for temporally resolved data and new methods to assay belowground production and turnover (c.f., Strand et al., 2008; Taylor et al., 2013).

5. Given the prevalence of phosphorus (P) limitation to growth (Cleveland et al., 2013), more work is needed to assess the consequences of enhanced exudation on P cycling. Exudates are likely to affect P cycling differently than N, as low molecular mass exudates can directly enhance P availability via chelation and pH-dependent changes in solubility (Lambers et al., 2008). Further, phosphatase enzymes cleave ester-bonded P in SOM, and thus, elevated rhizosphere phosphatase activity will not affect SOM decomposition to the same degree as N-releasing exoenzyme activity (Dijkstra et al., 2013). Given that phosphatase enzymes require N, however, it may be that more rapid N cycling in the rhizosphere also influences rhizosphere P cycling.

Conclusions

The ubiquity and magnitude of the effects in the meta-analysis demonstrate that rhizosphere processes are an important component of terrestrial element cycles and that resource investments by plants belowground exceed their cost, particularly in terms of nutrient uptake. Indeed, in the long-term, this must be true. The quantity of nutrients stored in plant biomass, especially in perennial ecosystems such as forests, exceeds that in microbial biomass often by orders of magnitude. The large majority of the nutrients plants acquire from the soil pass through the rhizosphere and may in fact be generated within the rhizosphere, a process that simultaneously affects C cycling. To the extent that root surfaces stimulate microbial activities while continuously exploring the soil, the total amount of N released from SOM is likely to have a large cumulative effect on element cycling over the lifetime of an individual root and across stand development. Given that root exudation and the activity of mycorrhizal fungi are increased by rising atmospheric CO$_2$ (Treseder, 2004; Alberton et al., 2005) and rhizosphere inputs affect the apparent temperature sensitivity of SOM decomposition (Boone et al., 1998; Zhu & Cheng, 2011), rhizosphere processes are likely to be an important control over element cycling and the response of ecosystems to global change.

Acknowledgements

This research was supported by the Office of Science (BER), U.S. Department of Energy, (grant No. 10-DOE-1053) and by the National Science Foundation (DEB-0743564, DEB-1011479). This work was supported in part by the National Science Foundation (DEB-1153401) and the American Association of University Women Doctoral Dissertation Fellowship. Phillips thanks Andrea Martin, Jill Griener and Brian Zimmer for their help in collecting and processing rhizosphere soil at the Duke FACE site and Turkey Hill Plantations.

References

